Cinética química

11/09/2012 14:41

A cinética química, também conhecida como cinética de reação, é uma ciência que estuda a velocidade das reações químicas de processos químicos e os fatores que as influenciam.

Cinética química inclui investigações de como diferentes condições experimentais podem influir a velocidade de uma reação química e informações de rendimento sobre o mecanismo de reação e estados de transição, assim como a construção de modelos matemáticos que possam descrever as características de uma reação química.

A velocidade da reação recebe geralmente o nome de taxa de reação. A taxa de reação está relacionada com: as concentrações dos reagentes e seu estado particular (estado físico, estado nascente dos gases, estado cristalino ou amorfo dos sólidos),o fato dos reagentes estarem ou não em solução (neste caso a natureza do solvente irá influir na velocidade da reação), a temperatura, a eletricidade, a luz, a pressão, a presença de catalisadores e dos produtos de reação.

 

Teoria das colisões: a velocidade de reação aumenta proporcionalmente à concentração dos reagentes

 

Sua importância é muito ampla, já que se relaciona com temas como, por exemplo, a rapidez com que um medicamento atua no organismo ou com problemas industriais, tais como a descoberta de catalisadores para acelerar a síntese de algum novo produto.

Em 1864, Peter Waage e Cato Guldberg tornaram-se os pioneiros no desenvolvimento da cinética química pela formulação da lei de ação das massas, a qual estabelece que a velocidade de reação é proporcional a quantidade de substâncias reagentes.

Taxa de reação

A cinética química principia com a determinação experimental das taxas de reação das quais as equações cinéticas de reações químicas (ou mais simplesmente, "lei de velocidade ou taxa") e a constantes de velocidade são derivados. Leis de taxa relativamente simples existem para reações de ordem zero (no qual as taxas de reação são independentes da concentração), reações de primeira ordem, e reações de segunda ordem, e podem ser derivado para outras.

Em reações consecutivas a etapa de determinação de taxa muitas vezes determina a cinética. Em reações consecutivas de primeira ordem, uma aproximação de estado estacionário a lei de taxa. A energia de ativação para uma reação é determinada experimentalmente através da equação de Arrhenius e a equação de Eyring. Os principais fatores que influenciam a taxa de reação incluem: o estado físico dos reagentes, a concentração dos reagentes, a temperatura em que a reação ocorre, e se ou não algum catalisador está presente na reação.

Fatores que influem na velocidade das reações

Natureza dos reagentes

Dependendo de quais substâncias reagem, o tempo de tais reações varia, ou, mais detalhadamente, a rapidez ou velocidade com que se formam ou rompem as ligações dependem da natureza dos reagentes. Reações ácidas, a formação de sais, as troca iônica são reações rápidas.

Exemplos típicos de reações rápidas são as reações dos explosivos, muitas vezes ocorrendo inicialmente dentro da própria molécula de uma única substância. Outro exemplo de reações rápidas são as oxidações de metais nobres, que produzem óxidos extremamente resistentes e aderentes que impedem a continuidade da reação (passivação), como com o ouro ou o cromo, presente no aço inoxidável.

Quando a formação de ligações covalentes toma lugar entre as moléculas e quando moléculas grandes são formadas, as reações tendem a ser muito lentas. A natureza e força das ligações em moléculas influencia grandemente a taxa de sua transformação em produtos. As reações que envolvem menor rearranjo de ligações ocorrem mais rapidamente que as que envolvem maior arranjo de ligações, como se evidencia nas diferentes velocidades de formação de polímeros, como o polietileno (mais rápido) e o poliéster (mais lento).

Temperatura

Com o aumento da temperatura, aumenta a energia cinética média das moléculas em um sistema e consequentemente o número de colisões efetivas entre elas. Alimentos na geladeira, como por exemplo leite, ovos, carnes e etc, demoram muito mais para estragar do que no ambiente. Isso porque as reações químicas feitas pelos microorganismos decompositores são retardadas pelas baixas temperaturas.

Há uma regra que foi formulada no século XIX pelo holandês Jacobus Henricus van't Hoff que diz que um aumento de 10 graus célsius na temperatura do sistema que irá reagir duplica a velocidade da reação. Hoje sabe-se que essa regra apresenta várias exceções, mas ela é muitas vezes útil para se fazerem previsões aproximadas do comportamento da velocidade de certas reações. Ela é conhecida como Regra de Van't Hoff.

Estado físico

O estado físico (sólido, líquido, ou gás) de um reagente é também um importante fator da taxa de reação. Quando reagentes estão na mesma fase, como em solução aquosa, o movimento térmico os coloca rapidamente em contato. Entretanto, quando eles estão em diferentes fases, a reação é limitada a interface entre os reagentes. A reação somente pode ocorrer na área de contato, no caso de um líquido ou gás, na superfície de um líquido. Agitação vigorosa e/ou turbilhonamento podem ser necessários para conduzir a reação a realizar-se completamente. Isto significa que quanto mais finamente dividido um sólido ou líquido reagente é, a sua maior área de superfície, tornará mais rápida a reação (o que é analisado mais detalhadamente em Superfície de contato, abaixo). Em química orgânica existe a exceção que reações homogêneas (no mesmo meio e fase) podem ocorrer mais rapidamente que reações heterogêneas.

Superfície de contato

Se numa reação atuam reagentes em distintas fases, o aumento da superfície de contato entre eles aumenta a velocidade das reações. Considerando, por exemplo, uma reação entre uma substância sólida e uma líquida, quanto mais reduzida a pó estiver a substância sólida, maior é a superfície de contacto entre as partículas de ambas as substâncias e portanto, maior é a possibilidade de essas partículas colidirem umas com as outras. Fazendo-se uma analogia, por exemplo, quando acende-se uma lareira, usa-se palha ou papel e destes acende-se as mais grossas porções de lenha.

Exemplos claros deste tipo de influência na velocidade de reações é o perigo que representa em silos de farinhas e grãos de cereais a combustão violenta, explosiva, de partículas finamente divididas com o ar. Um exemplo laboratorial que é apresentado sobre este fator é a reação do iodo "metálico", granulado, com o metal zinco. A reação se processa muito mais rapidamente com o zinco em pó que o zinco em lâmina, após o acréscimo de água sobre os reagentes.

Presença de um catalisador

Os catalisadores aumentam a velocidade de uma reação química, mas não participam da formação dos produtos, sendo completamente regenerados no final. Atuam ao promover rotas de reação com menor energia de ativação. O catalisador acelera a reação, pois diminui a energia de ativação das moléculas, mas não participa da reação, ou seja, não ocorre nenhuma mudança nos elementos químicos da reação, e o catalisador continua intacto. A ação do catalisador é abaixar a energia de ativação, possibilitando um novo caminho para a reação. O abaixamento da energia de ativação é que determina o aumento da velocidade da reação.

Inibidor: é uma substância que retarda a velocidade da reação. Veneno: é uma substância que anula o efeito de um catalisador. Catálise homogênea - Catalisador e reagentes constituem uma só fase. Catálise heterogênea - Catalisador e reagentes constituem duas ou mais fases (sistema polifásico ou mistura heterogênea).

Concentração dos reagentes

O aumento da concentração dos reagentes promove o aumento do número de colisões entre as moléculas. Isso faz com que a probabilidade de colisões efetivas acontecerem para a formação do complexo ativado seja maior.

Pressão

Um aumento de pressão em um sistema em reação implica uma diminuição em seu volume. Desse modo, haverá um numero maior de partículas reagentes por unidade de volume (aumento na concentração), o que possibilitará um maior número de colisões efetivas entre as partículas.

Notar que a pressão só exerce influência significativa na taxa de reação quando houver ao menos uma substância gasosa como reagente.

 

Catálise

A catálise é a mudança de velocidade de uma reação química devido à adição de uma substância (catalisador) que praticamente não se transforma ao final da reação. Os aditivos que reduzem a velocidade das reações se chamam inibidores. Os catalisadores agem provocando um novo caminho reacional, no qual tem uma menor energia de ativação.

Existem dois tipos de catálise: homogénea, na qual o catalisador se dissolve no meio em que ocorre a reação, e neste caso forma um reativo intermediário, que se rompe; e heterogénea, em que se produz a adsorção dos reagentes na superfície do catalisador; a catálise heterogénea é frequentemente bloqueada por impurezas denominadas "venenos".

Catalisador é toda e qualquer substância que acelera uma reação, diminuindo a energia de ativação, diminuindo a energia do complexo ativado, sem ser consumido, durante o processo. Um catalisador normalmente promove um caminho (mecanismo) molecular diferente para a reação. Por exemplo, hidrogênio e oxigênio gasosos são virtualmente inertes à temperatura ambiente, mas reagem rapidamente quando expostos à platina, que por sua vez, é o catalisador da reação.

Catalisadores sintéticos comerciais são extremamente importantes. Aproximadamente um terço de todo material do produto nacional bruto dos Estados Unidos da América envolve um processo catalítico em alguma etapa entre a matéria-prima e os produtos acabados. Como um catalisador torna possível a obtenção de um produto final por um caminho diferente (por exemplo, uma barreira de energia mais barata), ele pode afetar tanto o rendimento quanto a seletividade.

O catalisador pode diminuir a energia de ativação, aumentando assim a velocidade da reação. Catalisadores têm amplo emprego na indústria, por exemplo no processo de fabricação de ácidos (como ácido sulfúrico e ácido nítrico), hidrogenação de óleos e de derivados do petróleo. Todos os organismos vivos dependem de catalisadores complexos chamados enzimas que regulam as reações bioquímicas.

Ao contrário do que se possa imaginar, a temperatura não funciona como catalisador, apesar de, o aumento desta acelerar a reação. Porém, entende-se por catalisador, aquele composto que acelera a reação química diminuindo a energia de ativação da mesma, o que não ocorre com a elevação da temperatura, que propicia um aumento da energia do meio reacional e não uma diminuição da energia de ativação.

Na catálise homogénea:

  • Os reagentes e o catalisador encontram-se na mesma fase, geralmente é líquida;
  • Acelera o processo de reação;
  • A reacção evolui através de espécies intermédios com menor energia de activação;
  • A reacção tem mais do que um passo;
  • Os metais de transição estão normalmente envolvidos.

Exemplos de catalisadores usados na catálise homogénea:

  • Iões de metais de transição;
  • Complexos de metais de transição;
  • Ácidos e bases inorgânicos;
  • Enzimas.

Na catalise heterogénea:

  • O catalisador e os reagentes/produtos encontram-se em fases diferentes;
  • Acontece em lugares activos da superfície do catalisador;
  • Os gases são adsorvidos na superfície do catalisador, formando ligações fracas com os átomos metálicos do catalisador.

Exemplos de catalisadores que entram na catálise heterogénea:

  • Os metais de transição;
  • Óxidos de metais de transição;
  • Zeólitos;
  • Sílica/alumina.


Um exemplo muito usado de catálise, é quando a tromboplastina com íons de cálcio catalisa a reação de conversão de uma proteína sanguínea, a protrombina em trombina. Após outros processos, forma-se o coágulo.

Tipos de catálise

Os catalisadores podem ser porosos, peneiras moleculares, monolíticos, suportados, não-suportados.

Entre os tipos de catálise podemos citar:

Catálise ácida

A que é provocada por íons hidrogênio ou por substância de natureza ácida. Pode ser realizada através de um solvente prótico - por exemplo - ácido sulfúrico.

Catálise básica

A que é provocada por íons hidroxila ou por substância de natureza básica, como aminas.

Catálise ácido-básica

A que é provocada por íons ácidos e também por íons básicos.

Catálise homogênea

A catálise homogênea diz respeito a processos nos quais um catalisador está em solução com pelo menos um dos reagentes. Ocorre quando a mistura catalisadores + reagentes é uma mistura homogênea.

Catálise heterogênea

É um tipo de catálise onde reagentes, produtos e catalisadores encontram-se em fases diferentes. A catálise heterogênea envolve mais de uma fase; normalmente o catalisador é sólido e os reagentes e produtos estão na forma líquida ou gasosa. Nesse caso, o catalisador fornece uma superfície onde os reagentes irão reagir mais facilmente, e com menor energia de ativação.

Catálise por transferência de fase

Aquela que emprega catalisador capaz de retirar um reagente de uma fase, por exemplo aquosa e transferi-lo para outra fase, por exemplo orgânica (benzeno, etc), na qual sua reatividade se torna maior.

Histórico

Os catalisadores têm sido utilizados pelo ser humano por mais de 2000 anos. Os primeiros usos mencionados de catalisadores foram a produção do vinho, queijo e pão. Descobriu-se que era sempre necessário adicionar uma pequena quantidade da batelada anterior para fazer a nova batelada.

Todavia, foi somente em 1835 que Berzelius começou a reunir as observações de antigos químicos sugerindo que pequenas quantidades de uma origem externa poderiam afetar grandemente o curso de reações químicas. Esta força misteriosa atribuída à substância foi chamada catalítica. Em 1894, Oswald expandiu a explicação de Berzelius ao afirmar que catalisadores eram substâncias que aceleravam a velocidade de reações químicas sem serem consumidas.

Em mais de 150 anos desde o trabalho de Berzelius, os catalisadores têm desempenhado um importante papel econômico no mercado mundial. Apenas nos Estados Unidos, as vendas de catalisadores de processo em 1996 chegaram a US$ 1 bilhão, sendo usado principalmente no refino de petróleo e na fabricação de produtos químicos.

https://cms.loucosporbiologia.webnode.com/